
CS106X Handout 16
Autumn 2019 October 14th, 2019

The Sparse String Array

Now that all things recursion are behind us, we’ll continue our discussion of objects and
how they’re defined, and introduce the notion of a pointer, a memory address, and a
dynamically allocated figure to implement some of the more basic objects we already have
experience with—specifically, the Vector, the Grid, and the Stack. Once I press
through those, I’ll spend some time working through an abstraction that’s similar to the
SparseGrid template in the CS106X library set: the SparseStringArray.

Larger Problem: The Sparse String Array

A SparseStringArray is an array-like data structure providing super-duper fast access
to its elements, and near constant-time operator[] operations. It layers array semantics
over an ordered sequence of C++ strings, with the understanding that most of the strings
are empty. The SparseStringArray is different from our standard C++ Vector and
other array-like data structures, because its size is set at construction time (as with a
traditional array), and its memory footprint is kept to an absolute minimum. In theory,
each empty string requires just one bit of storage, which is less than 3% of the memory cost
incurred by the allocation of a full empty string. The implementation is slower than our
Vector, but it’s a wise choice when memory is at a premium and the vast majority of its
strings are empty.

Our SparseStringArray is backed by an array of groups, where each group is
responsible for managing a contiguous subset of array indices. The programmer specifies
not only the logical length of the SparseStringArray, but also the group size. If the
logical length of the full SparseStringArray is, for instance, established as 50,000, and
the group size is established to be 100, then group 0 manages indices 0 through 99, group
1 manages indices 100 through 199, group 2 manages indices 200 through 299, and so
forth. All search, set, and get operations are passed on to the appropriate group. Here’s a
glimpse of our class’s private sector:

You should read Chapters 6, 11, and 12 over the course of the
next week. Chapter 6 talks about how to define your own
classes, and much of it should be conceptually familiar to you
from prior OO work. Chapters 11 and 12 discuss computer
memory and the C++ directives granting the programmer
access to it.

 2

private:
 group *groups; // dynamically allocated array of structs, defined below
 int numGroups; // number of groups
 int arrayLength; // logical length of the full SparseStringArray
 int groupSize; // number of strings managed by each group

Each group contains a bitmap, which is an array of bools whose length is equal to the
group size, and a C++ Vector<string> to store just the non-empty strings. Search for a
particular element amounts to search within a particular group at index i. If bitmap[i]
is false, then the string at the ith position is understood to be the empty string. If instead
bitmap[i] is true, then the group needs to find the corresponding string in the C++
Vector<string>.

struct group {
 bool *bitmap; // set to be of size 'groupSize'
 Vector<string> strings; // ordered Vector<string> on the non-empty strings
};

Each true in a group’s bitmap corresponds to some string in the same group’s
Vector<string>. The true at the lowest index in the bitmap corresponds to the 0th
entry in the Vector; the true at the second lowest index in the bitmap corresponds to the
1st entry in the Vector, and so forth; and the total number of trues should be equal to the
logical length of the accompanying Vector. (In practice, the bool array would be
compressed to use just one bit of memory for each Boolean value, but for our purposes we
won’t implement that optimization, since it requires advanced C++ directives we haven’t
covered.) Variations of this data structure are used in industry when insanely large arrays—
with lengths in the billions or trillions—contribute to a larger system. It also has the neat
feature that individual groups can be distributed across multiple processors or multiple
machines.

Here’s the core of the .h file for the SparseStringArray class:

class SparseStringArray {
public:
 SparseStringArray(int length, int groupSize);
 ~SparseStringArray();

 int size() const;
 std::string& operator[](int index);
 const std::string& operator[](int index) const;

private:
 struct group {
 bool *bitmap;
 Vector<std::string> strings;
 };
 group *groups;
 int numGroups;
 int length;
 int groupSize;
 int getVectorIndex(int groupIndex, int bitmapIndex) const;
};

 3

Of course, the SparseStringArray presents the illusion that all strings, both empty and
nonempty, are stored in a sequential, array-like manner. But we understand the concept of
encapsulation enough to understand the smoke and mirrors of the implementation: the
internal representation is such that only nonempty strings are usually stored. Our job in
lecture will be to cover the implementation of the constructor, the destructor, and the
various methods. Here’s a test program that illustrates how a client can interact with a
SparseStringArray.

static void printSerialization(const SparseStringArray& ssa) {
 cout << "Serialization: ";
 for (int i = 0; i < ssa.size(); i++) {
 const string& s = ssa[i];
 if (!s.empty()) {
 cout << s;
 }
 }
 cout << endl;
}

int main() {
 SparseStringArray ssa(70000, 35);
 ssa[33001] = "need";
 ssa[58291] = "more";
 ssa[33000] = "Eye";
 ssa[33000] = "I";
 ssa[67899] = "cowbell!";
 printSerialization(ssa);
 return 0;
}

Here’s the output of that test program:

Serialization: Ineedmorecowbell!

Implementation

/**
 * File: sparse-string-array.cpp
 * -----------------------------
 * Presents the implementation of the SparseStringArray.
 */

#include "sparse-string-array.h"

SparseStringArray::SparseStringArray(int length, int groupSize) {
 this->length = length;
 this->groupSize = groupSize;
 numGroups = length / groupSize;
 groups = new group[numGroups];
 for (int group = 0; group < numGroups; group++) {
 groups[group].bitmap = new bool[groupSize];
 for (int i = 0; i < groupSize; i++) {
 groups[group].bitmap[i] = false;
 }
 }

 4

}

SparseStringArray::~SparseStringArray() {
 for (int i = 0; i < numGroups; i++) {
 delete[] groups[i].bitmap;
 }

 delete[] groups;
}

int SparseStringArray::size() const {
 return length;
}

string& SparseStringArray::operator[](int index) {
 int groupIndex = index / groupSize;
 int bitmapIndex = index % groupSize;
 int vectorIndex = getVectorIndex(groupIndex, bitmapIndex);

 if (!groups[groupIndex].bitmap[bitmapIndex]) {
 groups[groupIndex].bitmap[bitmapIndex] = true;
 groups[groupIndex].strings.insert(vectorIndex, "");
 }

 return groups[groupIndex].strings[vectorIndex];
}

static const string kEmptyString;
const string& SparseStringArray::operator[](int index) const {
 int groupIndex = index / groupSize;
 int bitmapIndex = index % groupSize;
 if (!groups[groupIndex].bitmap[bitmapIndex]) {
 return kEmptyString;
 }

 int vectorIndex = getVectorIndex(groupIndex, bitmapIndex);
 return groups[groupIndex].strings[vectorIndex];
}

int SparseStringArray::getVectorIndex(int groupIndex, int bitmapIndex) const {
 int vectorIndex = 0;
 for (int i = 0; i < bitmapIndex; i++) {
 if (groups[groupIndex].bitmap[i]) {
 vectorIndex++;
 }
 }

 return vectorIndex;
}

